
Burns – Spring 2006 CIS 325 – Java Programming I

Java Programming IJava Programming I

CIS 325CIS 325

Week 6 Week 6 –– Java ClassesJava Classes

Inheritance and PolymorphismInheritance and Polymorphism

Christopher K. BurnsChristopher K. Burns

WelcomeWelcome

Burns – Spring 2006 CIS 325 – Java Programming I

Agenda

Tonight’s agenda

• Classes

• Inheritance

• Polymorphism

• MidTerm Review

• Homework Review

Burns – Spring 2006 CIS 325 – Java Programming I

Home Work

Read text Chapters – up to 12

Demonstrate Inheritance and Polymorphism:

• Create a Java class to act as a base class; it must
define at least two methods.

• Create two other Java classes that inherit from the
base class and add at least one additional method

of their own.
• Create a Java class with a main method that will

demonstrate inheritance and polymorphism.

- Due on the 25th of May.

Burns – Spring 2006 CIS 325 – Java Programming I

Schedule

Week

Content

1 4/6 Chapter 1 Intro to Computers, the Internet and the Web

Chapter 2 Intro to Java Applications

Chapter 3 Java Classes and Objects: Part 1

Homework 1 Assigned

2 4/13 Chapter 4 Control Structures: Part 1

Chapter 5 Control Structures: Part 2

3 4/20 Chapter 6 Methods

Chapter 7 Arrays

Homework 2 Assigned

HW 1

DUE

4 4/27 Chapter 8 Java Classes and Objects: Part 2

Chapter 1-8 Review

5 5/4 MID-TERM EXAMINATION

HW 2
DUE

6 5/11 Chapter 9 Object-Oriented Programming: Inheritance

Chapter 10 Object-Oriented Programming: Polymorphism
Homework 3 Assigned

PROJECT

IDEA
DUE

7 5/18 No Class Tonight

8 5/25 Chapter 11 GUI Components: Part 1

Chapter 12 Graphics and Java2D

Homework 4 Assigned

HW 3

DUE

9 6/1 Chapter 13 Exception Handling

Chapter 29 Strings, Characters and RegEx

10 6/8 Chapter 20: Java Applets
Chapter 23 Multithreading

HW 4
DUE

11 6/15 Files, JDBC, Networking, Servlets, and JSP

Class lab time for review and assistance with final project

FINAL PROJECT DUE

PROJECT

DUE

Burns – Spring 2006 CIS 325 – Java Programming I

InheritanceInheritance

•• Definition Definition --

in·her·i·tance (P) Pronunciation Key (n-hr-tns) n.

The act of inheriting.

Something inherited or to be inherited.

Something regarded as a heritage: the cultural inheritance of Rome. See Synonyms

at heritage.

Biology.

The process of genetic transmission of characteristics from parents to offspring.

A characteristic so inherited.

The sum of characteristics genetically transmitted from parents to offspring.

from dictionary.com

Burns – Spring 2006 CIS 325 – Java Programming I

RelationshipsRelationships

•• Two ways of looking at items related to a class:Two ways of looking at items related to a class:

IS IS –– AA

andand

HAS HAS –– AA

•• Some class Some class ““is ais a”” somethingsomething

•• Some class Some class ““has ahas a”” somthingsomthing

Burns – Spring 2006 CIS 325 – Java Programming I

RelationshipsRelationships

•• Some class Some class ““is ais a”” somethingsomething

•• This is an example of inheritanceThis is an example of inheritance

•• A Mac A Mac ““is ais a”” Computer, so if you were creating a Computer, so if you were creating a

class hierarchy, Mac would be based on Computerclass hierarchy, Mac would be based on Computer

•• Some class Some class ““has ahas a”” somethingsomething

•• This is an example of containment or a member This is an example of containment or a member

item of a class. It is a property of a class/object.item of a class. It is a property of a class/object.

•• A Computer A Computer ““has ahas a”” processor, so your computer processor, so your computer

class would define a processor property.class would define a processor property.

Burns – Spring 2006 CIS 325 – Java Programming I

Simple InheritanceSimple Inheritance
public class Apublic class A

{{

private String name;private String name;

public String public String getNamegetName() { return name; }() { return name; }

public void public void setNamesetName(String name) { (String name) { this.namethis.name = name; }= name; }

}}

public class B public class B extends Aextends A

{{

private String stuff4B;private String stuff4B;

public void setStuff4B(String stuff) { stuff4B = stuff; }public void setStuff4B(String stuff) { stuff4B = stuff; }

}}

Burns – Spring 2006 CIS 325 – Java Programming I

Simple InheritanceSimple Inheritance

public class Testpublic class Test

{{

public static void main(String[] public static void main(String[] argsargs))

{{

B b = new B();B b = new B();

b.setNameb.setName("I inherited this from A");("I inherited this from A");

}}

}}

Burns – Spring 2006 CIS 325 – Java Programming I

Class HierarchyClass Hierarchy

•• Much like inheritance of family traits, it is easiest to look Much like inheritance of family traits, it is easiest to look

at inheritance in a tree style graph.at inheritance in a tree style graph.

Object

Component

Container

JComponent

JAbstractButton

JButton

Burns – Spring 2006 CIS 325 – Java Programming I

Class HierarchyClass Hierarchy

•• AllAll Classes in java inherit from Object (Classes in java inherit from Object (java.lang.Objectjava.lang.Object))

Object

Component

Container

JComponent

JAbstractButton

JButton

String Number

Float Integer

Burns – Spring 2006 CIS 325 – Java Programming I

Class HierarchyClass Hierarchy

•• AllAll Classes in java inherit from Object, even classes we Classes in java inherit from Object, even classes we

create ourselves.create ourselves.

Object

Component

Container

JComponent

JAbstractButton

JButton

String Number

Float Integer

ComputerTestApp

Mac PC SGI

Burns – Spring 2006 CIS 325 – Java Programming I

Class HierarchyClass Hierarchy

•• What do we get by having all classes in Java inheriting What do we get by having all classes in Java inheriting

from Object?from Object?

Burns – Spring 2006 CIS 325 – Java Programming I

using base class objectusing base class object
public class Apublic class A

{{

private String name;private String name;

public String public String getNamegetName() { return name; }() { return name; }

public void public void setNamesetName(String name) { (String name) { this.namethis.name = name; }= name; }

// override Object // override Object toStringtoString

public String public String toStringtoString() { return ("My name is: " + name); }() { return ("My name is: " + name); }

}}

Burns – Spring 2006 CIS 325 – Java Programming I

using base class objectusing base class object
public class Apublic class A

{{

private String name;private String name;

public String public String getNamegetName() { return name; }() { return name; }

public void public void setNamesetName(String name) { (String name) { this.namethis.name = name; }= name; }

// override Object // override Object toStringtoString

public String public String toStringtoString() { return ("My name is: " + name); }() { return ("My name is: " + name); }

}}

public class Testpublic class Test

{{

public static void main(String[] public static void main(String[] argsargs))

{{

B b = new B();B b = new B();

b.setNameb.setName("I inherited this from A");("I inherited this from A");

System.out.printlnSystem.out.println(b); // our (b); // our toStringtoString() method is called here() method is called here

}}

}}

Burns – Spring 2006 CIS 325 – Java Programming I

using base class objectusing base class object

Wait, how did Wait, how did printlnprintln(b) know that b was of type B that (b) know that b was of type B that

inherited from A and was able to call itinherited from A and was able to call it’’s s toStringtoString() method?() method?

public class Testpublic class Test

{{

public static void main(String[] public static void main(String[] argsargs))

{{

B b = new B();B b = new B();

b.setNameb.setName("I inherited this from A");("I inherited this from A");

System.out.printlnSystem.out.println(b); // our (b); // our toStringtoString() method is called here() method is called here

}}

}}

Burns – Spring 2006 CIS 325 – Java Programming I

using base class objectusing base class object

Wait, how did Wait, how did printlnprintln(b) know that b was of type B that (b) know that b was of type B that

inherited from A and was able to call itinherited from A and was able to call it’’s s toStringtoString() method?() method?

Because B inherits from A who inherits from ObjectBecause B inherits from A who inherits from Object…… B can be B can be

treated as A because it has all the characteristics of A, and treated as A because it has all the characteristics of A, and

B can also be treated as Object because it has all the B can also be treated as Object because it has all the

characteristics of Object.characteristics of Object.

This is polymorphismThis is polymorphism

Burns – Spring 2006 CIS 325 – Java Programming I

PolymorphismPolymorphism

poly·mor·phism
Pronunciation: "pä-lE-'mor-"fi-z&m
Function: noun

: the quality or state of being able to assume

different forms: as a : existence of a species in

several forms independent of the variations of sex

b : the property of crystallizing in two or more

forms with distinct structure

- poly·mor·phic /-fik/ adjective

- poly·mor·phi·cal·ly /-fi-k(&-)lE/ adverb

•• Definition Definition --

from m-w.com

Burns – Spring 2006 CIS 325 – Java Programming I

Group LabGroup Lab

LetLet’’s further investigate and learn about these concepts s further investigate and learn about these concepts

through handsthrough hands--on examples.on examples.

We shall create a basic inventory control system that has a We shall create a basic inventory control system that has a

few classes to represent types we will be tracking and few classes to represent types we will be tracking and

we shall use inheritance and polymorphism to make our we shall use inheritance and polymorphism to make our

lives easier.lives easier.

We will also look at a few additional features of the Java We will also look at a few additional features of the Java

API so that we can make a semiAPI so that we can make a semi--usable application out usable application out

of this demo/lab.of this demo/lab.

Burns – Spring 2006 CIS 325 – Java Programming I

Group LabGroup Lab

(note: the completed lab will be passed out and available for do(note: the completed lab will be passed out and available for download)wnload)

•• We shall create three classes:We shall create three classes:

1.1. TestAppTestApp, Item, and Computer, Item, and Computer

2.2. TestAppTestApp class shall contain main, and create class shall contain main, and create

instances of Computerinstances of Computer

3.3. Item shall have some basic propertiesItem shall have some basic properties

4.4. Computer shall inherit from ItemComputer shall inherit from Item

Burns – Spring 2006 CIS 325 – Java Programming I

Group LabGroup Lab

5.5. Calling functions in our super (super constructor)Calling functions in our super (super constructor)

6.6. Add a few more classes to lab (e.g. Monitor, Software)Add a few more classes to lab (e.g. Monitor, Software)

7.7. If you inherit from something you can be treated like If you inherit from something you can be treated like

that something. Letthat something. Let’’s see how this works.s see how this works.

8.8. Collections of objectsCollections of objects

•• ArrayListArrayList –– look at it in Java API doclook at it in Java API doc

•• Implement simple array of ItemsImplement simple array of Items

9.9. More fun with More fun with JOptionPaneJOptionPane

•• ListsLists

•• ConfirmationsConfirmations

