
Burns – Winter 2003 CIS 325 – Java Programming I

UML

Unified Modeling Language

www.omg.org

Burns – Winter 2003 CIS 325 – Java Programming I

UML
UML, why?

• Need to model software

• Visually expressive language

• Process Independent. UML is a language, not a
methodology

• Supports higher level practices such as
collaborations, frameworks, and patterns

Burns – Winter 2003 CIS 325 – Java Programming I

UML - History
• During the peak of the OO revolution in the early 90’s, many methods

sprung up for modeling software design.

• Three of the more popular methodologists, Booch (OOD), Rumbaugh
(OMT), and Jacobson (OOSE) were eventually assimilated by Rational.

• Rational proposed UML 0.8 as the standard in ‘95.

• Industry did not trust Rational so OMG (Object Management Group)
formed a task force to aid in the creation of this new software standard.

• OMG Combined several modeling language proposals and eventually
birthed UML 1.1 in ’97.

• UML updates are now handled by a Revision Task Force (RTF) of the
OMG. Current version is 1.4. Version 2.0 is due out in the very near
future.

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Requirements Analysis and Design

• Design a call tracking application
– Application is to be designed for tracking

telephone usage by roommates thus
simplifying payment of Telco bills each month.

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Basic steps

• Start Analysis with Use Cases
• Realize Use Cases to find classes
• Design Classes

Steps will vary based on the methodology

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo

• Use Case
– Use case is a short sequence of events. The

events are written from the perspective of the
users (actors).

– Communicate with end users using use
cases.

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Call Tracker
Finding Use Cases

Basic System Functions
1. Make a normal call
2. Make an emergency call
3. Print Monthly Statement

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Cases

1. Make a normal call
1. Caller picks up phone
2. Caller enters their pin number
3. Caller waits for confirmation tone
4. Caller enters telephone number to dial
5. Caller talks on phone
6. Caller hangs-up phone

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Case Finding

1. Make a normal call
1. Caller picks up phone
2. Caller enters their pin number
3. Caller waits for confirmation tone
4. Caller enters telephone number to dial
5. Caller talks on phone
6. Caller hangs-up phone

FIND THE ACTORS AND DEVELOP USE CASES

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Case Finding

1. Make a normal call
1. Caller picks up phone
2. Caller enters their pin number
3. Caller waits for confirmation tone
4. Caller enters telephone number to dial
5. Caller talks on phone
6. Caller hangs-up phone

Use Cases:
Pickup Phone, Enter Pin, Start Call, End Call

Actors:
Caller, Telephone, Database

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Case “Enter PIN” or Verify PIN

1 – User enters PIN
2 – If PIN valid user hears a confirmation tone
2 (alt) – If PIN invalid use case ends
3 – User hears dial tone indicating phone number

can now be dialed

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Cases

1. Make a normal call – Use Case composite

Caller

Pickup Phone

Telephone

Enter Pin

Dial Phone

Hangup Phone

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Cases

1. Make a normal call
(note that the Telephone actor and Caller actor are redundant)

Caller

Pickup Phone

Telephone Enter Pin

Dial Phone

Hangup Phone

Database

Verify Pin

Update Call Record

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Cases - realizing

1. Make a normal call

Realizing a use case: Takes the use case from the
user’s point of view and change it to the systems
point of view.

This is usually done through interaction diagrams such
as sequence diagrams and collaboration diagrams.

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Use Cases – realizing

Collaboration Diagram

– Capture the behavior of a single use case
– When designing complex systems, this can help

you to determine what classes you shall need
– When realizing other use cases of your system,

these classes can be re-used
– For simple systems, you can often develop a class

diagram first
– Interaction diagrams model objects, instances of

classes

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Collaboration Diagram – Verify Pin Number Use Case

callMgr : CallManager record : CallRecord

phoneMgr : PhoneManager

verify : VerifyUser

1:Pin Number
Entered

2: A
ct icat e C

al l
M

anage r

3:Pin
4:Verify

5:Create call
record

6:
A

dd
 R

ec
or

d
to

 D
at

ab
as

e

Database

Telephone

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Collaboration Diagram -> Sequence Diagram

A collaboration diagram and a sequence diagram
contain the same basic information.

Many CASE tools have functions that will convert
between these diagrams.

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Sequence Diagram

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Class Diagram

From the interaction diagram, you can determine
what major behaviors and attributes your
class will need.

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Class Diagram

+Create()
+startCall()
+endCall()
+getCurrentUser()

CallManager

+Create()

-callerName
-phoneNumber
-startTime
-endTime

CallRecord

+connectCall()
+disconnectCall()
+getCallManager() : CallManager
+isPhoneOffHook()

-connected
-offhook
-callManager

PhoneManager

+VerifyPin()

VerifyUser

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Packages

Package contains a logical
grouping of classes

Shows dependencies
between classes

Call TrackingReporting

Call Database

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
State Diagrams

• State diagrams describe the behavior of a system

• Shows all the possible states an object can be in

• State diagram drawn for a single class

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
State Diagrams - Phone Manager

Phone on hook Phone off hook

Verifying UserCall Connected

Call Disconnected

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Activity Diagrams

• Activity diagrams describe a sequence of activities

• Shows parallel states

• Shows conditional states

Burns – Winter 2003 CIS 325 – Java Programming I

UML - Demo
Activity Diagrams

Phone off hook

Verify User

Call Start

Monitor Call
Status

Update
Call Record

Call Ended

Burns – Winter 2003 CIS 325 – Java Programming I

UML
Other UML diagrams include

Deployment,
Object,
Physical

See UML specification for more details:
http://www.omg.org/technology/documents/formal/uml.htm

Burns – Winter 2003 CIS 325 – Java Programming I

UML CASE Tools
CASE Tools
Computer Aided Software Engineering

There are a variety of CASE tools on the market, most support UML.

These include:
Microsoft Visio
Rational Rose
Pencil and Paper

Some IDEs also include CASE tools:
JDeveloper
Microsoft Visual Studio

Burns – Winter 2003 CIS 325 – Java Programming I

UML Methodologies
To effectively use UML, you should follow a

methodology

A methodology describes how to analyze, design,
and even implement your system

The Call System demo followed the Unified Process

There are many methodologies, often the company
you are working has their own process

Burns – Winter 2003 CIS 325 – Java Programming I

UML Methodologies
UML and how to use it; major Methodologies

Rational Unified Process – RUP
www.rational.com
http://www.iconprocess.com/iconProcess/phases.php

Agile Modeling – As an enhancement to
Extreme Programming (XP)

www.agilemodeling.com

Burns – Winter 2003 CIS 325 – Java Programming I

UML Future

“UML will become a programming
language. There is no technical barrier –
only a political barrier,” -

- Ivar Jacobson, June 11 2001, UML World
Conference.

