
 Getting Started with JDBC  
 

 
Burns 1 - 10 August 9, 2003 

Getting Started with JDBC 
Christopher Burns – CIS 327 – Java II 
 
 
Introduction to JDBC 
 

JDBC (Java DataBase Connectivity) is Java’s interface to database systems.  Using JDBC 
you can connect to a wide variety of databases ranging from commercial relational 
database servers to flat data files.  The JDBC interface allows you to connect to a database 
and send SQL (Structured Query Language) commands as well as calling stored procedures. 

 
As is common with Java, there are many online tutorials that can help you in learning 
JDBC.  A good place to start is Sun’s “JDBC Basics” at 
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html 

 
 
Selecting a Database 
 

You will first need to decide on what database you will use.  Since JDBC drivers are 
available for most databases you have the freedom to choose most any major database 
platform.  If you have an MSDN Universal license or are taking one of the classes on 
Oracle you may want to consider MS SQL Server or Oracle.  There are free and trial 
versions available of some of these such as Oracle Personal 
(http://otn.oracle.com/software/products/8i_personal). 
 
As an alternative to the commercial database servers you may also want to consider an 
open source database server.  These include MySQL (http://www.mysql.com/) and 
Hypersonic (http://sourceforge.net/projects/hsqldb/). 
 
If you prefer to avoid having to setup a database server you might also consider Microsoft 
Access or CSV (Command Separated Values) text files.  The JDBC interface to these is the 
same as with the DBMS (DataBase Management Systems) so if you later choose the 
change your database type it is a simple matter. 

 
 
Getting JDBC Database Drivers 
 

Before connecting to your database through Java, you will first need to locate a JDBC 
driver for your database.  Sun has a resource for finding these drivers at 
http://industry.java.sun.com/products/jdbc/drivers 

 
MS Access (use JDBC ODBC bridge; see example) 
SQL Server http://jtds.sourceforge.net 
Oracle http://technet.oracle.com/software/tech/java/sqlj_jdbc/content.html 
CSV/Text http://sourceforge.net/projects/csvjdbc/ 
MySQL http://sourceforge.net/projects/mmmysql/ 



 Getting Started with JDBC  
 

 
Burns 2 - 10 August 9, 2003 

 
Once you’ve downloaded a JDBC driver you’ll need to ensure that it is either in your class 
path or decompressed into your project directory.  JDBC drivers are typically packaged in a 
JAR file.  Decompressing a JAR file can be done from the command line using the 
command: jar xvf filename.jar 
 
It is easier to include the JAR file in your classpath.  With JDeveloper this can be done 
through the project settings dialog. 
 

 
Open the project settings by right-clicking on the project 

 



 Getting Started with JDBC  
 

 
Burns 3 - 10 August 9, 2003 

 
Browse to Configurations/Development/Paths.  Add your JDBC JAR file to the Additional 
Classpath. 
 
If you are using the JDK at the command line, you can include your JAR file by adding the 
–classpath option to your java.exe command. 

 
 
Connecting to a Database 
 

Now that you have your JDBC driver, you are ready to connect to your database.  There are 
three steps that are taken to establish this connection.  First you will need to include the 
class path for the JDBC classes.  This is done by adding an import statement before your 
class implementation. 
 
 import java.sql.*; 
 
Next, dynamically load your JDBC driver using the Java statement “Classes.forName”.  
The reason for this runtime loading of the JDBC driver class is that it allows the driver to 
be changed at runtime, making your code more flexible. 
 

Class.forName( “org.relique.jdbc.csv.CsvDriver” ); 
 

The name of the JDBC driver class is in the form of the full package name followed by the 
class name.  This is usually included with the documentation of your JDBC driver, but can 
also be ascertained by examining the package within the JAR file. 
 



 Getting Started with JDBC  
 

 
Burns 4 - 10 August 9, 2003 

Third, create an instance of the Connection class for your database.  This is returned from 
the static getConnection method of the DriverManager class.  The getConnection method 
takes the URL of the database and has overloads that also can take a user id and password. 
 
 String databaseURL = “192.168.5.12” 

Connection connection = DriverManager.getConnection( databaseURL ); 
 
The URL of your database maybe a filename or a network address.  This depends on the 
type of database you are connecting to.  Check the documentation of your JDBC driver to 
determine the expected format. 
 
Both Class.forName and DriverManager.getConnection throw errors so you will need to 
have exception handling around these calls. 
 
Look at the JDK documentation for more information on Class and DriverManager: 
 

http://java.sun.com/j2se/1.4.1/docs/api/java/lang/Class.html 
http://java.sun.com/j2se/1.4.1/docs/api/java/sql/DriverManager.html 

 
 
Accessing the Database 
 

At this point you should now be able to connect to your database.  You can access your 
database by sending command statements.  This is done through the Statement class.  A 
Statement object is created through an active connection object. 
 
 Statement statement = connection.createStatement(); 
 
The statement object is a SQL channel to your database.  Through it you can send SQL 
commands and receive result sets. 
 
A sub class of Statement is the PreparedStatement class.  This class allows you to create a 
SQL command string with parameters that can be called multiple times.  If the DBMS 
supports prepared statements, your SQL statements will be compiled and optimized so they 
will run faster and more efficiently. 
 

PreparedStatement preparedQuery =  
connection.prepareStatement(  
 "SELECT * FROM myTable WHERE surname = ?” ); 

 
The use of PreparedStatements versus Statements is based on the capabilities of your 
DBMS and coding convenience.  When you are learning JDBC, the Statement class is 
easier to use and debug. 

 



 Getting Started with JDBC  
 

 
Burns 5 - 10 August 9, 2003 

Basic SQL Commands 
 

Since the Statement object expects SQL commands, here is a quick summary of some basic 
commands.  This is not intended to be a SQL reference, but if you are not familiar with 
SQL it should help get you started. 
 
Create a table 

A table can be created in your database by specifying the name of the table, column 
names and column types.  The column types, or data types, may vary for different 
databases. 
 
syntax: 
 
CREATE TABLE tableName ( column1Name column1Type, 

    column2Name column2Type, 
    … 
  ) 

 
example: 
 
CREATE TABLE myTable ( Surname varchar(30), 
  Phone varchar(10), 
  EmployeeID int ) 

 
Add a record to the table 

Records can be added to the table you created, or an existing table, by using the 
SQL command INSERT. 
 
syntax: 
 
INSERT INTO tableName ( column1Name, column2Name, … ) 
 VALUES ( column1Value, column2Value, … ) 
 
example: 
 
INSERT INTO myTable ( Surname, EmployeeID ) 
 VALUES ( “Jones”, 12 ) 
 
If you are inserting values into all of the columns it is not necessary to specify the 
column names but be sure the VALUES are in the order of the columns. 
 
example: 
 
INSERT INTO myTable VALUES ( “Smith”, “5405551212”, 10 ) 

 



 Getting Started with JDBC  
 

 
Burns 6 - 10 August 9, 2003 

Change a record in the table 
Records in a table can be modified using the SQL command UPDATE. 
 
syntax: 
 
UPDATE tableName SET  ( column1Name = column1NewValue, 
  column2Name = column2NewValue, 
  ... 
 ) 
 WHERE ( column1Name = column1Value, 
   … 
  ) 

 
example: 
 
UPDATE myTable SET ( Phone = “7035551212” ) 
 WHERE ( Surname = “Jones” ) 
 
The WHERE statement is a query that allows you to select records to update the 
meet your specified criteria. 
 

Delete a record from the table 
Records in a table can be deleted by using the SQL command DELETE.  Be careful 
the criteria you use for you WHERE clause as multiple records can be deleted. 
 
syntax: 
 
DELETE FROM tableName  WHERE ( columnName = columnValue, … ) 
 
example: 
 
DELETE FROM myTable WHERE ( Surname = “Smith” ) 

 
Delete a table from the database 

Tables in your database can be deleted using the DROP command. 
 
syntax: 
 
DROP TABLE tableName 
 
example: 
 
DROP TABLE myTable 



 Getting Started with JDBC  
 

 
Burns 7 - 10 August 9, 2003 

Retrieve records from a table 
Records can be retrieved from a table using the SQL command SELECT.  Records 
and columns from multiple tables my also be retrieved by using the JOIN operator.  
The joining of tables is beyond the scope of this introductory text. 
 
syntax: 
SELECT column1Name, column2Name …  FROM tableName 
 WHERE ( column1Name = column1Value, 
  ( column2Name = column2Value, 
   … 
  ) 
 
example: 
 
SELECT Surname FROM myTable WHERE ( EmployeeID = 10 ) 
 
If you wish to retrieve all rows from the table you may use one of the SQL wildcard 
characters “*”. 
 
example: 
 
SELECT * FROM myTable WHERE ( EmployeeID = 10 ) 
 
If you wish to retrieve all rows you may eliminate the query criteria. 
 
example: 
 
SELECT * FROM myTable 

 
 
 



 Getting Started with JDBC  
 

 
Burns 8 - 10 August 9, 2003 

Sample JDBC Application 
 
Using JDBC-ODBC Bridge for Microsoft Access Database 
 

The JDBC-ODBC bridge provides a mechanism for using Microsoft’s ODBC (Open 
DataBase Connectivity) programming interface from Java.  The bridge is considered 
“experimental” by Sun, and is not included in the Java runtime of all browsers.  If you 
create an applet using the bridge, users of your applet may need to download the full JRE 
to use the bridge. 
 
Refer to Sun’s description of the bridge at: 
http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/bridge.doc.html 
 
This example is using the bridge to open an Access database.  There are JDBC drivers 
available for Access commercially and if you intend to create and distribute an applet that 
reads from an Access database you may want to consider these. 
 
The example does not require downloading any special JDBC drivers and can be entered 
directly into JDeveloper and executed.  It does require that a Microsoft Access database 
named DB1.MDB be created at C:\. 
 
If you are running this program in JDeveloper, you can add parameters to pass to the 
application by accessing the project settings and adding them to the 
Configurations/Runner/Development, Program Arguments, text box. 
 

 
 



 Getting Started with JDBC  
 

 
Burns 9 - 10 August 9, 2003 

// Burns CIS 327 - Java II 
// 
// MS Access database connection through JDBC ODBC bridge 
// 
import java.sql.*; 
 
public class MSAccess  
{  
 static final String driverJDBC  = "sun.jdbc.odbc.JdbcOdbcDriver"; 
 
 // You can modify these to match your access database 
 static String dataBaseFile = "db1.mdb"; 
 static String dataBasePath = "c:\\"; 
 static boolean dataBaseExclusive = false; 
   
 public static void main(String args[])  
 { 
  try  
  { 
   // dynamically load Java class, in this case the JDBC driver 
   //  in this case, since the class is a constant string, it 
   //  is equivalent to "import com.inet.csv.CsvDriver" 
   Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
 
   String dataBaseURL = 
    "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" 
    + dataBaseFile + ";DefaultDir=" 
    + dataBasePath; 
 
   if ( dataBaseExclusive ) 
    dataBaseURL += ";Exclusive=1"; 
 
   // create a database connection object 
   Connection connection = DriverManager.getConnection(dataBaseURL, null, null); 
 
   // create a statement object for sending SQL statements to the database 
   Statement st = connection.createStatement(); 
 
   // create a table in the database 
   String createTableStatement = "CREATE TABLE myTable " + 
    "(surname VARCHAR(30), phone VARCHAR(10), employeeID INT)"; 
   System.out.println( createTableStatement ); 
   st.executeUpdate( createTableStatement ); 
    
   // add a record to the database if two arguements were provided 
   if ( args.length == 3 ) 
   { 
    String insertStatement = "INSERT INTO myTable " +  
     "VALUES('" + args[0] + "','" + args[1] + "','" + args[2] + "')"; 
    System.out.println( insertStatement ); 
    st.executeUpdate( insertStatement ); 
   } 
 
   // execute a select query 
   String queryStatement = "SELECT * FROM myTable"; 
   System.out.println( queryStatement ); 
   ResultSet rs = st.executeQuery( queryStatement ); 
       
   // iterate through the record set and print the results 
   while( rs.next() ) 
   { 
    for( int j=1; j<=rs.getMetaData().getColumnCount(); j++ ) 
    { 
     System.out.print( rs.getString(j)+"\t" ); 
    } 
    System.out.println();     
   } 
 
   // delete the record we just added 
   String deleteStatement = "DELETE FROM myTable WHERE " +  
    "surname = '" + args[0] + "'"; 



 Getting Started with JDBC  
 

 
Burns 10 - 10 August 9, 2003 

   System.out.println( deleteStatement ); 
   st.executeUpdate( deleteStatement ); 
 
   // delete the table we created 
   String deleteTableStatement = "DROP TABLE myTable"; 
   System.out.println( deleteTableStatement ); 
   st.executeUpdate( deleteTableStatement ); 
 
   //close the objects 
   st.close(); 
   connection.close(); 
  }  
  catch(Exception e)  
  { 
   e.printStackTrace(); 
  } 
 } 
} 

 
 
 
JDBC is still evolving 
 

At the time of this writing, the most recent JDBC release is 3.0 and comes bundled with 
J2SE 1.4.  An updated interface to JDBC called the RowSet Implementation is scheduled to 
be released in the near future as part of the J2SE 1.5.  This will make it easier to pass 
tabular data (row sets) between components, thus allowing greater flexibility in data 
handling objects. 

 


