
Burns – Winter 2005 CIS 265 – Object Oriented Programming

Object Oriented Programming with C++
CIS 265

Week 4 – C with Classes

Christopher K. Burns

Welcome

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Schedule

W e ek

C o n te n t

1 1 /1 1 R ev ie w

C h ap te r 1 In t ro to C o m p u te rs and C + + P ro g ram m in g
C h ap te r 2 C o n t ro l S tru ctu res
C h ap te r 3 F u nc t io ns
C h ap te r 4 A rrays

2 1 /1 8 A d d it io na l A rra y a nd F u nc t io n T o p ic s
C h ap te r 5 P o in te rs a nd S t r ing s
L a b 1 – F u nc t io ns, A r ra ys , a nd S tr ing s
H o m ew o rk 1 A ss ig ne d

3 1 /2 5 C h ap te r 6 C la sse s and D a ta A bstrac t io n
4 2 /1 C h ap te r 7 C la sse s : P a r t I

L a b 2 – C las ses 1
H o m ew o rk 1 D ue

5 2 /8 M ID -T E R M E X A M IN A T IO N (C h a p ter s 1 th ro u g h 7 *)
* o n ly p o rtio n s o f ch a p ter 7 th a t w ere c o ve re d in c la ss
F in a l P ro je c t A ss ig n e d

6 2 /1 5 C h ap te r 7 C la sse s : P a r t II
C h ap te r 8 O p erato r O ver lo ad ing
H o m ew o rk 2 A ss ig ne d

7 2 /2 2 C h ap te r 8 O p erato r O ver lo ad ing
H o m ew o rk 2 D u e
L a b 3 – C las ses 2

8 3 /1 C h ap te r 9 Inh e r itanc e : P a rt I
H o m ew o rk 3 A ss ig ne d

9 3 /8 C h ap te r 9 Inh e r itanc e : P a rt II
C h ap te r 1 0 P o lym o rp h is m
H o m ew o rk 3 D u e

1 0 3 /1 5 C h ap te r 1 0 P o lym o rp h ism
L a b 4 – Inhe r ita nce a nd P o ly m o rp h is m

1 1 3 /2 2 F IN A L P R O J E C T S D U E

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Agenda
Tonight’s agenda

• Review
• Pointers and strings
• Structs and Classes

• Accessor methods
• Constructors and Desctructors
• Static members
• this pointer

• LAB 2

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Object Oriented Programming

Home Work

Study for Mid-Term

Finish Lab 2 if not done in class

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Mid Term
Mid Term will cover lecture material as well

as text chapters 1-6

Mid Term will be a combination of multiple
choice and a short essay

Mid Term will be open book/notes

Mid Term review will occur before exam

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Looking at pointers and references

What value would i contain after the
following lines of code executed?

int x = 3;
int& y = x;
int* z = &y;
x++;
y -= 2;
*z += 1;

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Looking at pointers and references

Character array: char a[10];
a can act like a pointer
a can be passed as a char*
a is equivalent to &a[0] (address of first character)
a is a pointer to the first character of the array, but it is a

constant pointer:

char a[10];

char* b;

b = a; // this okay

a = b; // can’t do this because address of a is constant

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Declaring a Struct

struct Car

{

float odometerReading;

float blueBookValue;

long lastOilChangeDate;

float lifeTimeServiceCost;

float originalPrice;

char ownerName[MAX_STRING_LEN];

};

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Struct
Passing a struct to a function by value

void printMileage(Car car)

{

cout << "Meleage is " << car.odometerReading << endl;

}

main()

{

Car myCar;

myCar.odometerReading = 20000;

printMileage(myCar);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Struct
Passing a struct to a function as a pointer

(because some structs can get quite large, it is preferable to pass them as pointers)

void printMileage(Car* car)

{

cout << "Meleage is " << car->odometerReading << endl;

}

main()

{

Car myCar;

myCar.odometerReading = 20000;

printMileage(&myCar);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Struct
Passing a struct to a function by reference

(because some structs can get quite large, it is preferable to pass them as pointers)

void printMileage(Car& car)

{

cout << "Meleage is " << car.odometerReading << endl;

}

main()

{

Car myCar;

myCar.odometerReading = 20000;

printMileage(myCar);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Struct becomes a Class
#include <iostream>
using namespace std;

const int MAX_STRING_LEN = 128;

class Car
{
public:
float odometerReading;
float lifeTimeServiceCost;
float originalPrice;
char ownerName[MAX_STRING_LEN];
// a function in our struct:
bool isCarALemon()
{

return (lifeTimeServiceCost > originalPrice);
}

};

void main()
{
Car aCar;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes
Programmers like to keep their class definitions clean so that they are easy to read.
This includes implementing functions outside of the class definition.
This is done by prototyping the function in the class, and implementing it outside.
The outside implementation is done by “scoping” (the :: operator) the function name

within the class name:

class ClassName
{

public:
int someIntVariable;
bool methodName(int anIntValue); // this is just a

// regular protoype
};

// implement our function outside the class definition
bool ClassName::methodName(int anIntValue)
{

// do something meaningful
return true;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Separating Interface from Implementation

class Car
{
public:
float odometerReading;
float lifeTimeServiceCost;
float originalPrice;
bool isCarALemon(); // this is now just a prototype

};

bool Car::isCarALemon()
{

return (lifeTimeServiceCost > originalPrice);
}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection
You should make your instance variables all private.

If a consumer of the class needs access to these
private variables, accessor methods can be used.

Accessor methods allow the class consumer to get
the value of a private member and/or set the
value.

A read-only member can be implemented by only
having a get accessor and not a set accessor
method.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection

The set, is and get methods follow a human
readable ordering of verb-noun

setVariable
getVariable
isVariable

When defining your own methods, try to use this
convention

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection
#include <iostream>
using namespace std;

class Student
{
private:
long id;

public:
long getID();
void setID(long);

};

long Student::getID()
{
return id;

}

void Student::setID(long inID)
{
id = inID;

}

void main()

{

Student student;

student.setID(1);

cout << " id: " <<
student.getID() << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection
The is accessor prefix is primarily for boolean class

properties.

Example – isEnrolled()

class Student

{

private:

bool enrolled;

public:

bool isEnrolled();

void setEnrolled(bool);

};

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection

get and set methods for simple data types such as
long and floats is straight forward to implement.

type getVariable() void setVariable(type in)
{ {
return variable; variable = in;

} }

It requires a little more work for more complex data
types such as structs, arrays and classes.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection
When you implement a set method for an array, you

need to copy all the input elements into your
private variable.

When you implement a get method for an array,
you’ll most likely want to return a pointer to the
private variable.
– Only return const pointers to private variables.
– The const type ensures that the caller cannot modify

the contents of the private variable directly.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection
get and set for Strings

const char* getString()
{
return string;

}

void setString(char* inString)
{
strcpy(string, inString);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Classes - Data Protection
#include <iostream>
using namespace std;

const int MAX_STRING_LENGTH = 256;

class Student
{
private:
char name[MAX_STRING_LENGTH];
long id;

public:
const char* getName();
void setName(char*);
long getID();
void setID(long);

};

const char* Student::getName()
{
return name;

}

void Student::setName(char* inName)
{
strcpy(name, inName);

}

long Student::getID()

{

return id;

}

void Student::setID(long inID)

{

id = inID;

}

void main()

{

Student student;

student.setID(1);

student.setName("Stan Marsh");

cout << "name:" << student.getName() << endl;

cout << "id: " << student.getID() << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Class Constructors and Destructors
All classes have constructor and a destructor methods.

If they are not defined, default constructors and destructors
are generated by the compiler.

A constructor is called when the class is created, and
destructor when it is destroyed.

A constructor can perform initialization operations when
class is created

A destructor can perform clean-up operations when class is
to be destroyed

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Class Constructors and Desctructors
The constructor of a class has the same name as the class.

e.g. constructor method for Car would be Car()

Destructor has the same name as its class preceded by a
tilde. E.g. for Car it would be ~Car()

Neither the constructor, nor destructor return values.

Constructors can have arguments, the default constructor
does not.

Destructors cannot have arguments.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Default Constructor
#include <iostream>
using namespace std;

const int MAX_STRING_LENGTH = 256;

class Student
{
private:
char name[MAX_STRING_LENGTH];
long id;
bool enrolled;

public:
Student(); // default constructor

};

Student::Student() // default constructor implementation
{
strcpy(name, "not defined");
id = 0;
enrolled = false;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Overloading the constructor
The constructor is a special type of method

call, and can be overloaded.

Overloading the constructor can simplify
initialization of members.

If you have overloaded constructors, but did
not implement a default constructor, the
default constructor will not exist.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

When is the constructor called?
#include <iostream>
using namespace std;

class Student
{
private:
long id;

public:
Student(); // default constructor
Student(int); // overloaded constructor
~Student(); // destructor

};

Student::Student()
{
id = 0;
cout << "default constructor called" << endl;

}

Student::Student(int inID)
{
id = inID;
cout << "overloaded constructor called" << endl;

}

Student::~Student()

{

cout << "destructor called ";

cout << "for student: " << id << endl;

}

void main()

{

Student student1;

Student student2(1);

cout << "doing stuff" << endl;

}

default constructor called
overloaded constructor called
doing stuff
destructor called for student: 1
destructor called for student: 0

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Default Parameters
Functions can have default parameters.

A parameter with a default value is “optional”

Only right most parameters can have
defaults. That is to say if your first
parameter has a default, so must your
second, and so on.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Default Parameters
#include <iostream>
using namespace std;

// function with default parameters
// only right most parameters can have defaults
int someFunction(int x, int y = 1, int z = 1);

void main()
{
someFunction(5);
someFunction(2, 2);
//someFunction(1, , 5); // cannot skip params

}

int someFunction(int x, int y, int z)
{
cout << " x = " << x;
cout << " y = " << y;
cout << " z = " << z << endl;
return x * y * z;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Default Parameters
It can sometimes be helpful to include default

parameters with overloaded constructors

class Student

{

private:

long id;

public:

Student(int = 0); // overloaded constructor

~Student(); // destructor

};

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Static Members
Class vs. Object

Your class can exist and be called directly
without having any instances. These are
class level methods, and called static.

An instance of you class is an object. Your
class may include instance data that is only
accessible to objects.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Static Methods
#include <iostream>
using namespace std;

class Student
{
private:
long id;

public:
static print()
{
cout << "Student class" << endl;

}
long getID() { return id; }
void setID(long inID) { id = inID; }

};

void main()
{
Student::print();
Student studentObject;
studentObject.setID(1);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Initializing Static Members
#include <iostream>
using namespace std;
const int MAX_STRING_LENGTH = 256;

class Student
{
private:
long id;
static char className[];

public:
static print()
{

cout << className << endl;
}
long getID() { return id; }
void setID(long inID) { id = inID; }

};

char Student::className[] = "Student Class"; // static members declared at file scope

void main()
{
Student::print();
Student studentObject;
studentObject.setID(1);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Static Members Example
#include <iostream>
using namespace std;
const int MAX_STRING_LENGTH = 256;

class Student
{
private:
long id;
static long studentCount;

public:
Student()
{

studentCount++;
}
static long getStudentCount()
{

return studentCount;
}
long getID() { return id; }
void setID(long inID) { id = inID; }

};

long Student::studentCount = 0;

void main()

{

Student student1;

Student student2;

Student student3;

cout << "There are " <<
Student::getStudentCount();

cout << " students" << endl;

}

There are 3 students

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Looking at thyself – this pointer
Every class instance, object, has a special

private member called the this pointer.

The this pointer refers to the instance.

It allows the class instance to know who it is,
as well as being able to tell others who it is.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

The this pointer
There are many uses for the this pointer,

three of which are:

1. Avoiding name collisions
2. Cascading method calls
3. Passing an instance of yourself

Burns – Winter 2005 CIS 265 – Object Oriented Programming

The this pointer
Example 1 – get/set – avoiding name collisions

class Student

{

private:

long id;

public:

long getID() { return id; }

void setID(long id)

{

this->id = id;

}

};

Burns – Winter 2005 CIS 265 – Object Oriented Programming

The this pointer
Example 2 – cascading method calls
class Student
{
private:
long id;
bool enrolled;

public:
long getID() { return id; }
Student& setID(long id)
{ this->id = id; return *this; }

bool isEnrolled() { return enrolled; }
Student& setEnrolled(bool enrolled)
{ this->enrolled = enrolled; return *this; }

};

void main()
{
Student student;
student.setEnrolled(true).setID(1);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

The this pointer
Example 3 – passing your instance around

#include <iostream>
using namespace std;

// constants
const int MAX_STRING_LENGTH = 256;
const int MAX_STUDENTS = 20;

// class Student interface
class Student
{
private:

static long studentCount;
static Student* studentList[MAX_STUDENTS];

char name[MAX_STRING_LENGTH];
bool enrolled;
long id;

public:
Student(char*, bool);

const char* getName();
void setName(char*);
bool isEnrolled();
void setEnrolled(bool);
long getID();

static Student* getStudentFromID(long id);
static long getStudentCount();

};

// class Student implmentation
Student::Student(char* name, bool enrolled)
{

setName(name);
setEnrolled(enrolled);
id = studentCount;
studentList[Student::studentCount] = this;
studentCount++;

}

const char* Student::getName()
{

return name;
}

void Student::setName(char* name)
{

strcpy(this->name, name);
}

bool Student::isEnrolled()
{

return enrolled;
}

void Student::setEnrolled(bool enrolled)
{

this->enrolled = enrolled;
}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

The this pointer
Example 3 – passing your instance around – cont’d

long Student::getID()
{

return id;
}

// class Student static method implmentation
Student* Student::getStudentFromID(long id)
{

if ((id <= studentCount) && (id >= 0))
{

return studentList[id];
}
else
{

return 0;
}

}

long Student::getStudentCount()
{

return studentCount;
}

// class Student static member initialization
long Student::studentCount = 0;
Student* Student::studentList[MAX_STUDENTS];

// main routine to demonstrate Student
void main()
{

// get students
do
{

char name[MAX_STRING_LENGTH];
bool enrolled;
cout << "Student name:";
cin >> name;
if (stricmp(name, "end") == 0)

break;
cout << " enrolled?:";
cin >> enrolled;
new Student(name, enrolled);

}
while(true);

Burns – Winter 2005 CIS 265 – Object Oriented Programming

The this pointer
Example 3 – passing your instance around – cont’d
// print list of students
for(int i = 0; i < Student::getStudentCount(); i++)
{

cout << "Student Record" << endl;
cout << " name: " << Student::getStudentFromID(i)->getName() << endl;
cout << " id: " << Student::getStudentFromID(i)->getID() << endl;
cout << " enrolled:" << Student::getStudentFromID(i)->isEnrolled() << endl;

}
}

Output
Student name:Eric

enrolled?:1
Student name:Kenny

enrolled?:0
Student name:end
Student Record
name: Eric
id: 0
enrolled:1

Student Record
name: Kenny
id: 1
enrolled:0

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Lab 2

Homework 2 will depend on Lab 2, so keep
a copy of it handy

