
Burns – Winter 2005 CIS 265 – Object Oriented Programming

Object Oriented Programming with C++
CIS 265

Week 2 – Review II

Christopher K. Burns

Welcome

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Syllabus – schedule changes

W e ek

C o n te n t

1 1 /1 1 R ev ie w

C h ap te r 1 In t ro to C o m p u te rs and C + + P ro g ram m in g
C h ap te r 2 C o n t ro l S tru ctu res
C h ap te r 3 F u nc t io ns
C h ap te r 4 A rrays

2 1 /1 8 A d d it io na l A rra y a nd F u nc t io n T o p ic s
C h ap te r 5 P o in te rs a nd S t r ing s
L a b 1 – F u nc t io ns, A r ra ys , a nd S tr ing s
H o m ew o rk 1 A ss ig ne d

3 1 /2 5 C h ap te r 6 C la sse s and D a ta A bstrac t io n
4 2 /1 C h ap te r 7 C la sse s : P a r t I

L a b 2 – C las ses 1
H o m ew o rk 1 D ue

5 2 /8 M ID -T E R M E X A M IN A T IO N (C h a p ter s 1 th ro u g h 7 *)
* o n ly p o rtio n s o f ch a p ter 7 th a t w ere c o ve re d in c la ss
F in a l P ro je c t A ss ig n e d

6 2 /1 5 C h ap te r 7 C la sse s : P a r t II
C h ap te r 8 O p erato r O ver lo ad ing
H o m ew o rk 2 A ss ig ne d

7 2 /2 2 C h ap te r 8 O p erato r O ver lo ad ing
H o m ew o rk 2 D u e
L a b 3 – C las ses 2

8 3 /1 C h ap te r 9 Inh e r itanc e : P a rt I
H o m ew o rk 3 A ss ig ne d

9 3 /8 C h ap te r 9 Inh e r itanc e : P a rt II
C h ap te r 1 0 P o lym o rp h is m
H o m ew o rk 3 D u e

1 0 3 /1 5 C h ap te r 1 0 P o lym o rp h ism
L a b 4 – Inhe r ita nce a nd P o ly m o rp h is m

1 1 3 /2 2 F IN A L P R O J E C T S D U E

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Agenda

Tonight’s agenda

• Review part II
• Arrays and Functions
• Pointers and Strings

• Start Chapter 6 – C++ Classes
• Lab 1

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Object Oriented Programming

Home Work

Homework #1 – Due two weeks from tonight

Lab #1 – Due next week, if not done in class

Read Chapter 6

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Agenda
• Review Part II

– Arrays
– Strings as arrays of char
– Pointers
– Strings as pointers

• Classes Part 1
– Struct
– Class

• Lab 1

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Review - Arrays
• An array is a simple collection of data
• You can access members of an array

through the array’s index

Array of 4 numbers: index element

0 12

1 24

2 15

3 5

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Declaring Arrays
• Declare Array Form 1

– dataType nameOfArray[numberOfElements];
– int numbers[4];

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Using Arrays
• Using the Array

int numbers[4];
numbers[0] = 12;
numbers[1] = 24;
numbers[2] = 15;
numbers[3] = 5;

index element

0 12

1 24

2 15

3 5

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Declaring Arrays
• Declare Array Form 2

You can declare an array and set its elements:

– dataType nameOfArray[] =
{ element1, element2, … elementn };

– int numbers[] = { 12, 24, 15, 5 };

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Using Arrays
• Arrays are most useful in loops that are

iterating through its elements.

for(int i = 0; i < 4; i ++)
{
cout << numbers[i] << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Using Arrays
• Usually a good idea to use a constant (or

#define) to hold the length of the array.
• If you change the size of the array it makes life

easier since you don’t have to update controls
structures and code that is using array size

const int ARRAY_SIZE = 4;
or

#define ARRAY_SIZE 4

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Example Using Arrays
#define ARRAY_SIZE 4

void doubleEm(int nums[], int count)
{
for(int i = 0; i < count; i++)
nums[i]*=2;

}

main()
{
int numbers[ARRAY_SIZE];
for(int i = 0; i < ARRAY_SIZE; i++)
{
cout << "Enter number to double " << i << ": ";
cin >> numbers[i];

}
doubleEm(numbers, ARRAY_SIZE);
for(int i = 0; i < ARRAY_SIZE; i++)
{
cout << "Element[" << i << "] = " << numbers[i] << endl;

}
}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Sorting and Searching Arrays
Often it is useful to organize the collection of

elements in the array. There are also times
when you would like to search an array to find
an element it contains.

There are numerous sorting and searching
algorithms for doing this.

As this is a review we will not cover this, but you
should be familiar with sections 4.6-4.8 in the
book

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Part I
C-Style strings are just an array of char

Chars in C are enclosed in single quotes
char aChar = 'S';

So a string could be defined:
char aString[] = { 'S', 't', 'r', 'i', 'n', 'g' };

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings are just char arrays
Instead of having to define each char, C lets

you define a collection of char using
double quotes.

char aString[] = { 'S', 't', 'r', 'i', 'n', 'g' };

Strings is C are enclosed in double quotes

char aString[] = "String";

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Manipulating Strings as arrays
cout and cin handling strings:

char aString = “This is a string”;
cout << aString;
cin >> aString;

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Manipulating Strings as arrays
You can manipulate the string by treating it

as an array.

Problem: How do you know when you’ve
reached the end of the string?

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Manipulating Strings as arrays
Problem: How do you know when you’ve reached the end

of the string?

NULL Termination

What is NULL Termination?

Traditionally on the PC, all printable characters are stored internally
using their ASCII value (see Appendix B (page 1216) in book.) The
NULL character is ASCII code 0.

By placing a NULL character (char nullChar = ‘\0’) as the last element
of your character array (at the end of the string) you will know when
you’ve reached the end of the string.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

NULL Termination Example
const int MAX_STRING_LEN = 256;

main()
{
char aString[MAX_STRING_LEN];
cout << "Enter some text: ";
cin >> aString;
int i = 0;
while(aString[i] != '\0')
{
i++;

}
cout << "String is " << i << " characters long" << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Another String Example
void reverseString(char string[])
{
int length = 0;
while(string[length] != '\0')
length++;

for(int i = 0; i < (length) / 2; i++)
{
char buffer = string[i];
string[i] = string[length - 1 - i];
string[length - i - 1] = buffer;

}
}

main()
{
char aString[MAX_STRING_LEN];
cout << "Enter some text: ";
cin >> aString;
reverseString(aString);
cout << "String reversed is " << aString << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
The contents of a variable is stored in the computer’s

memory. A pointer is this memory location. A pointer
“points” to a value in memory.

Address Value

0012FED4 20

int i = 20;

i is stored in memory
starting at address 0012FED4

0012FED5 0

0012FED6 0

0012FED3 CC

0012FED7 0

0012FED8 CC

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
The contents of a variable are stored

in the computer’s memory at an
address. A pointer contains a
memory address.

If the address stored in the pointer is
the address where a variable’s
value is contained, the pointer
“points” to a value in memory.

Computer’s
Memory

Variable X

04-27-94-00

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
The location of the contents in a variable in

C can be obtained using the & operator.

int i = 20;

cout << "i is stored at: " << &i << endl;

When used in this way it is the address
operator (not bitwise AND)

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers

We can find the address of any variable using the & operator.

The address returned by & in Visual C++ on Pentium class
systems is a 4 byte value (long)

The item stored at this address can be of any data type.

How can we represent that this address belongs to a certain
data type?

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
* is the value at this memory location
& is the address of this variable

The * is the converse of the & operator

We can declare a pointer variable type. This is a variable that hold a
memory address, but has a type associated with it.

int* is a pointer to an int
double* is a pointer to a double
char* is a pointer to a char

These are all essentially the same since they only contain the memory
address that corresponds to the start of the variable, but because
they have a type (int, double, char…) the compiler knows how to
interpret the data they are pointing to.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
A variable is stored in the computer’s memory. A pointer is

this memory location. A pointer “points” to a value in
memory.

Address Value

0012FED4 20

int i = 20;
int *ptrI = &i;

ptrI == 0x0012FED
*ptrI points to

ptrI is type int so compiler
knows how it is stored in memory

0012FED5 0

0012FED6 0

0012FED3 CC

0012FED7 0

0012FED8 CC

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
* is the value at this memory location
& is the address of this variable

The * is the converse of the & operator

int i = 20;
int* iPtr = &i;
cout << "i = " << *iPtr << endl;

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and Arrays
You’ve already used pointers, but they were called

arrays!

int array[20];

The variable array is a pointer to the first element
of the array.

array == &array[0]

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and Arrays

Thus

cout << "array[0] = " << array[0] << endl;
cout << "*array = " << *array << endl;

Print out the same result!

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and Arrays and Math
As an array, an index can be used to

access (point to) different locations in
memory
(remember that the array index selects
which value in memory is referenced)

Pointers have the same ability, but it is
done with “pointer math”.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and Arrays and Math
Pointer math is manipulating the

location in memory being pointed to
by addition/subtraction.

int i[] = { 20, 30 };

*i == 20
*(i + 1) == 30

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and Arrays and Math
int i[] = { 20, 30 };

*i == 20

*(i + 1) == 30

Because the pointer is
of type int, the
pointer math (+1)
knows to go to the
next int as opposed
to the next memory
location

Address Value

0012FED4 20

0012FED5 0

0012FED6 0

0012FED3 CC

0012FED7 0

0012FED8 30

0012FED8 0

0012FED8 0

0012FED8 0

0012FED8 CC

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Passing Pointers – The Swap
void swap(int* a, int* b)
{

int temp = *a;
*a = *b;
*b = temp;

}

main()
{

int i = 10;
int j = 20;
cout << "i = " << i << endl;
cout << "j = " << j << endl;
cout << "swapping i and j" << endl;
swap(&i, &j);
cout << "i = " << i << endl;
cout << "j = " << j << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and References
Pointers allow for pointer math and the actual

address contained in the pointer can be
changed.

C++ introduced a different type of pointer called a
reference.

A reference is a pointer in spirit but it acts just like
the variable it is pointing to.

A reference can be thought of as an alias for a
variable.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers and References

int i = 10;

int &iRef = i; // iRef is a reference to i

int *iPtr = &i; // iPtr is a pointer to I

cout << “i = “ << i << “ iRef = “ << iRef << “ *iPtr = “ << *iPtr << endl

i = 10 iRef = 10 *iPtr = 10

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Passing Pointers – The Swap 2
void swapRef(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

main()
{

int i = 10;
int j = 20;
cout << "i = " << i << endl;
cout << "j = " << j << endl;
cout << "swapping i and j" << endl;
swapRef(i, j);
cout << "i = " << i << endl;
cout << "j = " << j << endl;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Pointers
Now that you have a thorough understanding of pointers,

we can move on… ;)

Pointers are one of the most difficult concepts for
programmers new to the C language to master.

(This is one of the reasons James Gosling did not
include them in Java)

When using pointers, picture the computer’s memory, and
that values are just locations in memory and a pointer is
just the address of that location.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Part II
Strings are arrays of char. Arrays are simply

pointers. Thus strings can be manipulated as
pointers using pointer math. Strings can also be
easily passed to functions as either char* or
char[].

As we’ll see this has numerous implications when
dealing with string manipulation and passing
strings to functions.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – char*
Back in the old C days,

char* was synonymous
with string.

Since much of C++ still uses
C libraries, we’ll stick with
the char* convention of
string manipulation.

In BC++ times, C
programmers spent many

days hunting for char * and
pointer errors

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Standard C Library
There are several functions built into the standard C

library for handling null terminated strings.
Depending on your development environment there
may be many additional functions including some to
handle unicode and wide character string formats.

We will look at three categories of string handling
functions (there are more string functions available than this
list includes):
– String metrics
– Copying strings
– Comparing strings
– Converting strings

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Standard C Library
String metrics

– int strlen(char*) – get the length of a string

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Standard C Library
Copying strings

– strcpy(char* dest, char* source) – copy a string

– strncpy(char* dest, char* source, n) – copy n
characters of a string

– strcat(char* dest, char* source) – append source to
dest (concatenate)

– strncat(char* dest, char* source) – append n
characters of source to dest

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Standard C Library
Comparing strings

– int strcmp(char* string1, char* string2) – returns 0 if
strings are lexicographically equal

– int stricmp(char* string1, char* string2) – returns 0 if
strings are lexicographically equal. Ignores case.

– char* strstr(char* string, char* subString) – finds first
occurrence of subString in string. If found returns
pointer to subString

– char* strchr(char* string, char c) – finds first
occurrence of c in string. If found returns pointer to c,
else returns NULL (0)

– size_t strcspn(char* string, char* charSet) – finds
first occurrence of any char in charSet and returns
index to that char

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Standard C Library
Convert strings

– int atoi(char*) – converts string into integer. (see
also atof, atol)

– itoa(int i, char* output, int radix) – converts integer to
string using radix as number base (e.g. radix = 10 for
decimal)

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Standard C Library
A complete list of string handling functions for Visual C++ can

be found on the msdn website at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vclib/html/_crt_string_manipulation.asp

These functions also require the header file:
#include <cstring>

to be included

Note: cstring is included by iostream

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Strings – Another Example
Example:

sillyString

A function that will return a randomly generated
string of a specified length. The string will start
with a consonant followed by a vowel followed
by a consonant…

Burns – Winter 2005 CIS 265 – Object Oriented Programming

sillyString
char consonants[] = "bcdfghjklmnpqrstvwxyz";
char vowels[] = "aeiou";
void sillyString(char* string, int length)
{
srand((unsigned)time(NULL)); // seed random number generator
for(int i = 0; i < length; i++)
{
if (i % 2) // if i is an odd number
{
int randomIndex = (int)
(((float)rand()/(float)RAND_MAX) * (float)(strlen(vowels) - 1));
string[i] = vowels[randomIndex];
}
else // if i is an even number
{
int randomIndex = (int)
(((float)rand()/(float)RAND_MAX) * (float)(strlen(consonants) - 1));
string[i] = consonants[randomIndex];

}
}
string[i] = '\0'; // need to NULL terminate our string

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Ad-hoc Polymorphism
• Function Overloading

– You can have multiple functions with the same
function name.

– The functions are differentiated by the parameters
that are passed to them.

– The following functions all have the same name, so it
is easy for the user of your function. Depending on
the parameters passed a different actual version of
your function is called.

• printMe(char*)
• printMe(int)
• printMe(float)
• printMe(char*, char*)

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Ad-hoc Polymorphism
• Function Overloading

– In C++ the name of your function is:
functionName + parameterNames

(this is what is referred to a C++ name mangling)

– The C++ name of the function does not include the
return value since it is optional for the caller to use the
return value.

– Thus in C++:
int printMe(char*) has the same name as bool printMe(char*)

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Ad-hoc Polymorphism
• Function Overloading

– The C++ name of the function does not include the
return value since it is optional for the caller to use the
return value.

– Thus in C++:
int printMe(char*)
has the same name as

bool printMe(char*)

– If you tried to compile you would get the error:
error C2556: int printMe(char*) overloaded
function differs only by return type from bool
printMe(char*)

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Function Overloading
• Function Overloading

– You are writing a function to divide two
numbers.

• If the two numbers are floats, just divide as normal.

• If the two numbers are integer, divide them but
return the result rounded using the floor() function.

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Example – divideUs
#include <iostream>
#include <cmath>
using namespace std;

const int MAX_STRING_LEN = 256;

float divideUs(float num1, float num2)
{
cout << "divideUs - float version called" << endl;
float returnValue = num1 / num2;
cout << " - " << num1 << " / " << num2 << " = " << returnValue << endl;
return returnValue;

}

int divideUs(int num1, int num2)
{
cout << "divideUs - integer version called" << endl;
int returnValue = (int)floor((float)num1 / (float)num2);
cout << " - " << num1 << " / " << num2 << " = " << returnValue << endl;
return returnValue;

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Example – divideUs
Calling divideUs:

main()
{
char aString1[MAX_STRING_LEN];
char aString2[MAX_STRING_LEN];

cout << "Enter two numbers seperated by a space: ";
cin >> aString1 >> aString2;

float floatNum1 = (float)atof(aString1);
float floatNum2 = (float)atof(aString2);
float floatResult = divideUs(floatNum1, floatNum2);

int intNum1 = (int)floatNum1;
int intNum2 = (int)floatNum2;
int intResult = divideUs(intNum1, intNum2);

}

Burns – Winter 2005 CIS 265 – Object Oriented Programming

Review

The Review is Over

Any Questions?

(If you think of a question later either catch
me after class or send me an email)

